Solid Loss of Carrots During Simulated Gastric Digestion
نویسندگان
چکیده
The knowledge of solid loss kinetics of foods during digestion is crucial for understanding the factors that constrain the release of nutrients from the food matrix and their fate of digestion. The objective of this study was to investigate the solid loss of carrots during simulated gastric digestion as affected by pH, temperature, viscosity of gastric fluids, mechanical force present in stomach, and cooking. Cylindrical carrot samples were tested by static soaking method and using a model stomach system. The weight retention, moisture, and loss of dry mass were determined. The results indicated that acid hydrolysis is critical for an efficient mass transfer and carrot digestion. Internal resistance rather than external resistance is dominant in the transfer of soluble solids from carrot to gastric fluid. Increase in viscosity of gastric fluid by adding 0.5% gum (w/w) significantly increased the external resistance and decreased mass transfer rate of carrots in static soaking. When mechanical force was not present, 61% of the solids in the raw carrot samples were released into gastric fluid after 4 h of static soaking in simulated gastric juice. Mechanical force significantly increased solid loss by causing surface erosion. Boiling increased the disintegration of carrot during digestion that may favor the loss of solids meanwhile reducing the amount of solids available for loss in gastric juice. Weibull function was successfully used to describe the solid loss of carrot during simulated digestion. The effective diffusion coefficients of solids were calculated using the Fick's second law of diffusion for an infinite cylinder, which are between 0.75 × 10(-11) and 8.72 × 10(-11) m(2)/s, depending on the pH of the gastric fluid.
منابع مشابه
Digestion of Raw and Roasted Almonds in Simulated Gastric Environment
Knowledge of digestion kinetics of solid foods in human stomach, as affected by food processing methods, is critical in establishing processing conditions at the manufacturing stage to achieve desirable release of nutrients in the gastrointestinal tract. The objective of this study was to investigate how roasting affected disintegration and solid release properties of almond in simulated gastri...
متن کاملModes of Disintegration of Solid Foods in Simulated Gastric Environment
A model stomach system was used to investigate disintegration of various foods in simulated gastric environment. Food disintegration modes and typical disintegration profiles are summarized in this paper. Mechanisms contributing to the disintegration kinetics of different foods were investigated as related to acidity, temperature, and enzymatic effect on the texture and changes in microstructur...
متن کاملSurvival of microencapsulated probiotic Lactobacillus paracasei LBC-1e during manufacture of Mozzarella cheese and simulated gastric digestion.
An erythromycin-resistant strain of probiotic Lactobacillus paracasei ssp. paracasei LBC-1 (LBC-1e) was added to part-skim Mozzarella cheese in alginate-microencapsulated or free form at a level of 10(8) and 10(7)cfu/g, respectively. Survival of LBC-1e and total lactic acid bacteria (LAB) was investigated through the pasta filata process of cheese making (in which the cheese curd was heated to ...
متن کاملIn vitro Simulated Digestion on the Biostability of Hibiscus cannabinus L. Seed Extract
Wong Y.-H., Tan Ch.-P., Long K., Nyam K.-L. (2014): In vitro simulated digestion on the biostability of Hibiscus cannabinus L. seed extract. Czech J. Food Sci., 32: 177–181. We investigate the biostability of phenolic acids from a kenaf (Hibiscus cannabinus L.) seed extract using an in vitro model simulating the physicochemical (pH, temperature and bile salts) and biological (gastric and pancre...
متن کاملModeling of pathogen survival during simulated gastric digestion.
The objective of the present study was to develop a mathematical model of pathogenic bacterial inactivation kinetics in a gastric environment in order to further understand a part of the infectious dose-response mechanism. The major bacterial pathogens Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella spp. were examined by using simulated gastric fluid adjusted to various pH valu...
متن کامل